Key Role for Store-Operated Ca2+ Channels in Activating Gene Expression in Human Airway Bronchial Epithelial Cells
نویسندگان
چکیده
Ca2+ entry into airway epithelia is important for activation of the NFAT family of transcription factors and expression of genes including epidermal growth factor that help orchestrate local inflammatory responses. However, the identity of epithelial Ca2+ channel that activates these transcriptional responses is unclear. In many other non-excitable cells, store-operated Ca2+ entry is a major route for Ca2+ influx and is mediated by STIM1 and Orai1 proteins. This study was performed to determine if store-operated Ca2+ channels were expressed in human bronchial epithelial cells and, if so, whether they coupled Ca2+ entry to gene expression. Cytoplasmic Ca2+ measurements, patch clamp recordings, RNAi knockdown and functional assays were used to identify and then investigate the role of these Ca2+ channels in activating the NFAT and c-fos pathways and EGF expression. STIM1 and Orai1 mRNA transcripts as well as proteins were robustly in epithelial cells and formed functional Ca2+ channels. Ca2+ entry through the channels activated expression of c-fos and EGF as well as an NFAT-dependent reporter gene. Store-operated Ca2+ entry was also important for epithelial cell migration in a scrape wound assay. These findings indicate that store-operated Ca2+ channels play an important role in stimulating airway epithelial cell gene expression and therefore comprise a novel potential therapeutic target for the treatment of chronic asthma and related airway disorders.
منابع مشابه
Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation
BACKGROUND Agonist stimulation of airway smooth muscle (ASM) results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse...
متن کاملRole of capacitative Ca2+ entry in bronchial contraction and remodeling.
Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whethe...
متن کاملStore-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells.
The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell sign...
متن کاملA key role for STIM1 in store operated calcium channel activation in airway smooth muscle
BACKGROUND Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate ...
متن کاملRole of capacitative Ca entry in bronchial contraction and remodeling
Sweeney, Michele, Sharon S. McDaniel, Oleksandr Platoshyn, Shen Zhang, Ying Yu, Bethany R. Lapp, Ying Zhao, Patricia A. Thistlethwaite, and Jason X.-J. Yuan. Role of capacitative Ca2 entry in bronchial contraction and remodeling. J Appl Physiol 92: 1594–1602, 2002; 10.1152/japplphysiol.00722.2001.—Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014